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Abstract

The concept of trustworthy Al has gained widespread attention lately. One of the aspects
relevant to trustworthy AI is robustness of ML models. In this study, we show how to
probabilistically quantify robustness against naturally occurring distortions of input data
for tree-based classifiers under the assumption that the natural distortions can be described
by multivariate probability distributions that can be transformed to multivariate normal
distributions. The idea is to extract the decision rules of a trained tree-based classifier,
separate the feature space into non-overlapping regions and determine the probability that a
data sample with distortion returns its predicted label. The approach is based on the recently
introduced measure of “real- World—robustness Wthh Works for all black box classifiers, but
is only an approximationa 5 5 5 h, whereas our
proposed method gives an exact measure.

1 Introduction

Robustness of machine learning models is a recently widely investigated topic ——and a variety of

robustness measures, e.g., closest counterfactual, have been developed. [Scher & Triigler| (2022) introduced

the term real-world-robustness, which describes a general framework to compute the robustness of individual
redictions of a trained machine learning model against natural distortions, e.g., data-processing errors,

noise or measurement errors in the in ut data. The real-world-robustness R of the prediction f of an

with € ~ Z) and an integral that determines the probability P for a different prediction compared to the
data sample y,

f f' (s €) py (2) de
P(f(p+e) #f(w)="= 700 (2)
BN
The real-world-robustness R,, of the data sample y with distortion € ~ Z) is then computed b

It is therefore a probabilistic measure. In words, real-world-robustness is the probability that the prediction
classification) of an input sample does not change under the given uncertainty of the input sample.
Scher & Triigler (2022) showed how this probabilistic robustness measure can approximately be computed
for any black-box classifier with a Monte-Carlo based method, under the constraint that the input feature
space is not _too high dimensional. They additionally provide a detailed discussion for the justification of
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this_definition of real-world-robustness. and how it differs from other robustness measures. The practical
relevance of this robustness measure are settings in which the uncertainty of input samples is known (or
at least approximately known), and in which one needs a measure of how likely it is that a classification
will change due to_the random error in the input data. This could for example be applications that use
multivariate sensor data with measurement noise (e.g.. temperature measurements at different locations) or
where medical measuring devices (e.g;, Glucose meter) are being used.

In this paper, we quantif robabilistic robustness by exactly computing the measure from
[Scher & Triigler| (2022) for tree-based classifiers (Decision Trees, Random Forests and XGBoosted

classifiers). under the assumption that the uncertainty of the input test samples can be described by certain
statistical distributions. This is possible because the decision boundaries of tree-based classifiers are explicitly

iven (in contrast to, e.g., neural network classifiers). We extract the decision rule of each decision node of
a _tree-based classifier to separate the input feature space into non-overlapping regions. We then determine
the probability that a random data sample wrt. the given uncertainty, which is modelled as a _probability
distribution, around a test sample lies in a region that has the same label as the prediction of the test sample
itself. The method returns the exact probability that a data sample with distortion returns its predicted

label, which is preferable in settings where exact results are crucial (e.g., safety critical applications or medical

applications), whereas the measure from [Scher & Triigler| (2022) returns an approximation. For tree-based
classifiers, our method is thus preferable, as the results are guaranteed to be exact. The method offers a tool
to see how likely the returned result is given the underlying uncertainty of the input. We refrain from using
the term real-world-robustness, and instead speak of probabilistic robustness.

The paper is structured as follows. First, we review various measures and concepts of robustness in Section 21
Next we describe how to quantify probabilistic robustness against natural distortions in the input for single

Decision Trees in Section Then the approach is extended to Random Forest classifiers and XGBoosted
classifiers in Section d In Section [5l we present experimental results and Section [6] concludes the paper.

2 Related Work

One extensively studied topic is adversarial robustness (Szegedy et al., [2014), which deals with small par-
ticular manipulations of the input to cause misclassifications. These systematic manipulations are called
adversarial attacks, and several algorithms have been developed (Chen et al., [2019b} [Pawelczyk et al., [2020;
Sharma et all [2020) to find the nearest counterfactual (Kment), [2006; [Wachter et al. 2018} Pawelczyk|
et all 2021) (closest point to the input according to a distance metric that leads to misclassification) of
data samples in various scenarios. Especially the area of adversarial attacks on images is highly researched
since it can cause a variety of safety concerns, e.g., in medical image processing and classification
let al., [2021; [Kaviani et all [2022)). |Zhao et al.| (2018) argue that adversarial attacks are unnatural and not
meaningful since the adversarial data samples are very unlikely to occur in real-world applications. They
therefore developed a method to generate natural adversarial examples (Hendrycks et all [2021) with gen-
erative adversarial networks (Goodfellow et all 2016). Adversarial examples are found in the latent space
and mapped back into the original feature space. The distance from the input data sample to the generated
adversarial data samples is measured in the latent space, not in the original feature space. [Pedraza et al.
go a step further and argue that data samples that are generated with adversarial attacks shall not
be called natural adversarial examples. In their interpretation, natural adversarial examples occur in the
real-world and lead to a misclassification “without an evident cause”, i.e., are caused by natural noise (e.g.,
from cameras or by natural changes of the input). |[Vasiljevic et al| (2016) investigated the robustness of
classifiers against blurs in images. Hendrycks & Dietterich| (2019) create benchmarks for the robustness of
image classifiers with several robustness metrics on corrupted images (ImageNet-C). These alterations to
the images are being referred to as common corruptions (e.g., noise and blurring in images), opposed to
adversarial attacks and can be interpreted as natural adversarial examples. Hendrycks & Dietterichl (2019)

also define the term “corruption-robustness”, which measures the rate of misclassification in test sets with

included errors, but does not give a conditional probability of misclassification for single test samples as
the definition of probabilistic robustness that we use. The robustness of trained classifiers is measured by

evaluating the performance on unseen test data and the computation of the corruption error and variations
thereof. Rusak et all (2020]) use a robustness measure that estimates the distance to the decision boundar
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for each test sample, but for each sample in a random direction, and is therefore only suitable as a measure
for the robustness over the whole dataset. In adversarial examples, robustness is usually measured by some

distance metric, e.g., the Euclidean distance, and the distance to the closest counterfactual is used as the
robustness metric. With this interpretation of robustness, one single adversarial example in the close vicinity

of a test sample can have a huge influence in the evaluation of classifiers (see [Scher & Triigler| (2022) for a
visual illustration).

Otherapproachesfor-the-Approaches for the quantification of robustness of trained Machine Learning models,
mainly neural networks, exist. Weng et al.| (2019) developed a probabilistic robustness verification tool. Their

proposed metric is based on attack scenarios within /,-balls around a data sample where the goal is to find
the closest counterfactual of a specified target class, called the certified lower bound. To relax the condition
of the closest counterfactual, the idea is to compute the largest distance between an input sample and the
closest counterfactual that can be certified with a certain confidence. Mangal et al.| (2019)) introduce the term
probabilistic robustness of neural networks. A neural network is probabilistically robust if for any two input
data samples drawn form the input probability distribution, the probability that the distance between the
outputs is smaller than the distance between the inputs multiplied by a constant, given that the inputs are
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not too far apart, is larger than a predefined threshold. These definitions of probabilistic robustness differ
from the notion of real-world-robustness introduced in|Scher & Triigler| (2022)), which allows samples from the
entire feature space as inputs, whereas [Weng et al.| (2019) and Mangal et al.| (2019) only consider restricted

inputs. |[Cohen et al (2019) investigate robustness of smoothed classifiers with Gaussian noise, which come
from a base classifier. A Monte-Carlo sampling approach is used to determine the most probable outcome

of a data sample under the Gaussian noise. Even though the probability for each class can be computed, it
is not used as the measure of robustness.

Another research direction deals with robust adversarial training of machine learning models.
present a comprehensive survey on robust adversarial training by introducing the fundamentals and
a general theoretical framework, and by summarising different training methodologies against various attack
scenarios. |Tan et al. (2022) introduce a training framework by adding an adversarial sample detection
network to improve the classifier. In tree-based models, a training framework to learn robust trees against
adversarial attacks has been developed by [Chen et al. (2019a)), and |Ghosh et al| (2017) investigate the
robustness of Decision Trees with symmetric label noise in the training data. |Chen et al.| (2019b)) propose a
robustness verification algorithm for tree-based models to find the minimal distortion in the input that leads

to a misclassification. [Rusak et al| (2020) propose a training algorithm that makes image classifiers more

robust against naturally occurring noise.

3 Robustness of Decision Trees

At first we show how to quantify probabilistic robustness against natural distortions in the input for a trained
Decision Tree (DT) classifier with a categorical target variable. We extract the decision rule
from each decision node of a trained DT to split the input feature space into non-overlapping regions. For
two-dimensional inputs, the regions are rectangles and for higher dimensions, the regions are hyperrectangles.
For ease of description, we call the regions bozes (Chen et all) 2019b). To determine the robustness of the
prediction of a data sample with uncertainty (e.g., noise or measurement errors), we classify the data sample
with the trained DT and compute the probability that a random sample wrt. the given uncertainty is in a
box that has the same label as the data sample. Taking the sum over the computed probabilities returns
the robustness of the DT classification for that particular data sample.

3.1 Segmentation of the feature space

We have a trained DT without prior knowledge about the input features X;. Each decision node in a DT
is a decision rule of the form X; < 7;;, where 7;; marks the 4t decision rule of feature X;. Note that Tij is
unique for each j in a DT. We extract the decision rule from each decision node in the tree, add it to the
decision rule set 7; of the associated feature X; and sort each 7; in ascending order. The elements of 7; split
one dimension of the input feature space into non-overlapping segments and the individual elements of two
sets 7; and 7, are orthogonal to each other. Using two successive elements of each decision rule set 7; to split
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Figure 1: Ilustration of boxes of a trained binary Decision Tree with two input features Xi, X5 and a data
sample p.

the input feature space creates one individual box. If a feature X; is bounded, we expand 7; to its minimum
and/or maximum values, otherwise we expand 7; to negative and positive infinity to cover the entire input
feature space, i.e., if ; = {60,80,100}, the expanded unbounded set is 7/ = {—o0, 60,80,100,00}. This
results in a total number of boxes n;, given by

N N

ny = [0 = 1) = [ (17l + D), (3)

(3 (3

where N is the number of input features and |7;| is the number of decision rules for feature X;.

3.2 Quantifying robustness

We use the created boxes to quantify the robustness R, of the prediction of an input data sample p with
associated uncertainty p, (¥). We determine the predicted label of 1 as well as the labels of all boxes by
classifying their centre with the DT. To compute the robustness of the prediction of pu, it suffices to only
consider the boxes that have the same label as p itself, denoted as B, since data samples in these boxes
return the same result as p. We determine the probability mass mp that each box B € B, is covering wrt.
the given uncertainty p,, around the data sample p. Taking the sum over the determined probability masses
returns the robustness of the prediction of p. Figure[l]illustrates the classified boxes (two labels) of a trained
DT with two input features X;, X5 and a data sample pu.

In case the uncertainty distribution of the data sample p is analytically tractable (e.g., a multivariate normal
distribution with uncertainty X), an exact quantification of the probabilistic robustness can be computed.
We determine the probability mass mp that each box B € B, is covering by integrating the probability
density function p, (%) of the underlying uncertainty distribution between the lower and upper boundaries
of each box. Taking the sum over all computed probability masses gives the robustness R, of the prediction
of the data sample p,

Bupp

BEBM low
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where B, denotes the lower boundaries and B, denotes the upper boundaries of a box.

One-dimensional feature space For one-dimensional data samples p with uncertainty given as a prob-
ability distribution, we can just integrate the PDF of the uncertainty probability distribution between the
lower and upper boundary of each box B € B, if it is analytically tractable and take their sum to get the
robustness of the prediction of p.

Input data with multivariate normal uncertainty For an N-dimensional data sample p with multi-
variate normal uncertainty ¥, we integrate the multivariate normal probability density function

ﬂ_;x _lf_ Ty—1(g_
) = e (5w - ) )

with the method by |Genz| (1992) between the lower and upper boundaries of each box B € B, and take the
sum over the probability masses, which returns the probabilistic robustness of the prediction of p.

Non-normal multivariate uncertainty distributions For an N-dimensional data sample p with cor-
related features and the uncertainty in different dimensions given by different continuous distributions,
computing the probabilistic robustness via analytical integration is not always possible, since integrating the
joint PDF might not be analytically tractable - except if the variables are all uncorrelated to each other.
However, our method can be adapted to any multivariate probability distribution that can be transformed to
a multivariate normal distribution. This is the class of probability distributions with N features, that can be
described by a N x N covariance matrix and a set of N transformations. These probability distributions can
be generated from a multivariate normal distribution (characterised by an N-dimensional 0-mean vector and
the N x N covariance matrix) and then applying the transformations for each feature. This process is known
as Normal to Anything NORTA (Cario & Nelson, [1997). If such a joint probability distribution is given,
together with the rank correlations (e.g., Spearman’s p) between the features, it can be transformed to a
multivariate normal distribution in a two step procedure, which in turn can be used for our robustness calcu-
lation. The rank correlations between the features are used, since the various features might not be linearly
correlated. In the first step, we apply the cumulative distribution function (CDF) of the respective distri-
butions that model the uncertainty w.r.t. the data sample p on the decision boundaries in each dimension,
which transforms them into the [0, 1]V-space. Note that the rank correlations between the features remain
unchanged in this step. In the second step, we use the inversion method (Devroye, [1986]) by applying the
inverse of the CDF of the standard normal distribution on each transformed decision boundary in the [0, 1]V-
space. Note that the rank correlations between the features still remain unchanged. We can now transform
the rank correlations p; between the features into linear correlation coefficients with Ry = 2 - sin(py, - 7/6)
(Pearson, 1907, and solve Equation [4| by integrating the multivariate normal probability density function
(Equation |5) with g = 0 and the covariance matrix ¥ with Ones on the main diagonal elements and the
transformed linear correlation coefficients Ry between the features on the off-diagonal elements between the
transformed lower and upper boundaries of each box B € B, to compute the robustness of the prediction
of a data sample p.

For an N-dimensional data sample with independent features, the probabilistic robustness can be computed
directly via analytical integration, if the PDF of the uncertainty distribution in each dimension is analytically
tractable. We determine the covered probability mass of each box B € B, by taking the product of the
covered probability masses in each dimension and then take the sum over the probability masses mp per
box.

3.2.1 Runtime Improvement

Computing the robustness of low-dimensional inputs and shallow trees is fast since the number of boxes is
small. For high-dimensional inputs and deep trees, the number of boxes (see Equation [3) and simultaneously
the runtime increases with each input dimension. One approach to decrease the runtime for quantifying the
robustness of the prediction of a data sample p with multivariate normal uncertainty ¥ is to only consider
the boxes that are inside of or intersect with the bounding box of, e.g., the 99% confidence hyperellipsoid
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Figure 2: Boxes inside of or intersecting with the bounding box of the 99% confidence ellipse around a data
sample with multivariate normal uncertainty, and more transparent boxes outside of the bounding box.

around a data sample pu. Experiments have shown that the resulting robustness computations are much
faster since the probability mass for less boxes needs to be computed, while the difference in the results is
negligible, see Section [5l There is also a theoretical upper bound for the error of the resulting robustness

(at max 1 percentage point)—, ie., if the probabilistic robustness of a data sample p = 0.67, the robustness
when only considering the boxes that are inside of or intersect with the bounding box of the 99% confidence
hyperellipsoid around the data sample 1 is in the interval [0.66, 0.68]. This is different to the random samplin

method employed in [Scher & Triigler| (2022), for which a confidence interval could be computed based on

concentration inequalities, but no upper or lower bound probabilistic uncertainty. Another approach to
speed up computations, which has not been tested, would be to compute the probability mass mp of each

box with the same label as p in parallel.

Figure |2 represents a two-dimensional data sample p with multivariate normal uncertainty, where the boxes
that are outside of the 99% confidence ellipse are more transparent. Only using the boxes that are inside of
or intersect with the bounding box of the 99% confidence ellipse to determine the robustness of the prediction
of u speeds up computations, while the difference in the results is negligible (see Section .

4 Robustness of other tree-based methods

We now extend the approach to determine the robustness of a DT to more advanced tree-based methods.
We look at Random Forests, which consist of multiple trees, and at XGboosted trees.

4.1 Random Forest

A Random Forest (RF) (Breimanl |2001) extends a Decision Tree model and consists of multiple DTs. Each
tree is trained on a bootstrapped dataset with the same size as the original training dataset, i.e., a sample
can be part of the training set for one tree multiple times, whereas other samples are not part of that training
set. We extract the decision rule of each decision node in all individual trees, merge them per input feature
X; to form the decision rule set 7; and create boxes to compute the robustness of the prediction of a data
sample.
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Analogous to the DT setup, we have a trained RF without prior knowledge about the input features X; or
the individual trees. For each tree in the RF, we extract the decision rule X; < 7;; of each decision node, add
it to the decision rule set 7; of the associated feature X; and sort each 7; in ascending order, as was done for
DTs. Since a RF consists of multiple DTs, decision nodes in different trees can have the same decision rule
X; < 744, leading to duplicate entries in 7;. We eliminate all but one of the duplicate entries 7;;, such that
each 7;; is unique. To create boxes for robustness computations, we use the method described in Section @
for DTs.

After creating the boxes, we compute the robustness of the prediction of a data sample i in a RF, analogous
to the approach for DTs described in Section [3.2] First we determine the label of each box by classifying its
centre with the RF, not with the single trees. Then we classify p with the RF to determine its label and
take the sum over all probability masses mp of the boxes B € B,, (boxes with the same label as p).

Computing the robustness in a RF is computationally more expensive than in a DT, since a RF consists of
multiple trees, leading to more decision rules and a higher number of boxes (see Equation. In Section
we described an approach to approximate the robustness of the prediction of a data sample with multivariate
normal uncertainty in a DT by only considering the boxes that are inside of or intersect with the bounding
box of the 99% confidence hyperellipsoid. Experiments with various sizes of RFs (number of trees and depth
of trees) have shown that computing the robustness of the prediction of a data sample is much faster when
only considering these boxes, while the robustness results only differ marginally (see Section .

Figure|3| contains the boxes of a trained RF (Figure with two input features X7, Xo, two labels and three
associated DTs (Figures , as well as a data sample with multivariate normal uncertainty. We
see that each individual DT is represented by different decision boundaries and different boxes. Overlaying
the individual Figures of the DTs gives the representation for the trained RF (Figure [3d)). We also observe
that the data sample is classified differently in DT (red label) compared to the other two DTs and the RF
(yellow label).

At first glance, it would actually seem simpler to compute the probabilistic robustness against natural distor-
tions in the input of a RF by first computing it individually for each DT of the forest, and then combining the
results. This is, however, not possible, as averaging the robustness of the individual trees cannot account for
interdependencies (e.g., even if tree A and tree B have the same robustness, the contributions from different
parts of the feature space might be different, and averaging them would lead to false results).

4.2 XGBoosted Decision Tree model

Similar to a Random Forest, an XGBoosted Decision Tree model (Chen & Guestrinl 2016) also consists of
multiple trees. Instead of training the trees from bootstrapped datasets, the individual trees build on each
other. We again extract the decision rules of each decision node in all trees and combine them per feature
X, to form the associated decision rule set 7;. We create boxes which are used to compute the robustness
of the prediction of a data sample. Since trees in an XGBoosted Decision Tree model build on each other,
there are less different decision rules than in a RF, when the number of trees and depth of the trees is the
same. This leads to a smaller number of boxes and thus computations are faster.

5 Experimental results

In this Section we summarise experimental results for quantifying probabilistic robustness against natural
distortions in the input for tree-based classifiers. Experiments were carried out on 1 core of an Intel(R)
Xeon(R) 6248 CPU @ 2.50GHz processor with 256GB RAM. We are using 2-3 datasets for the experiments,
the Iris flower dataset (Anderson|1936))and-, the MNIST dataset (Deng}[2012)) and the Pima-Indians-Diabetes
dataset (Smith et al.l |1988). For illustration purposes, the uncertainty distribution in most experiments is
prescribed as a multivariate normal distribution since we can compute solutions directly. We have not made
comparisons to other notions of robustness since most other robustness techniques (e.g., adversarial examples)
use a distance metric between a data sample and counterfactuals or measure the robustness of the classifier,

compared probabilistic robustness with the distance to the closest counterfactual on two datasets, showin
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Figure 3: Boxes of 3 Decision Trees with two-dimensional input (a) - (c¢) and the resulting combined boxes
(d) of the associated binary Random Forest.
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Table 1: Comparison of probabilistic robustness results for 15 test samples of the Iris dataset using all boxes
and only the boxes that are inside of or intersect with the bounding box of the 99% confidence hyperellipsoid
around a test sample for robustness computation

All boxes 99% boxes
Test sample Boxes - Robustness Boxes - Robustness
1 11 - 0.77741 2 -0.77740
2 8 - 0.99986 4 - 0.99985
3 13 - 0.94940 13 - 0.94940
4 13 - 0.98266 13 - 0.98266
5 11 - 0.99248 11 - 0.99248
6 8 - 0.99986 2 - 0.99985
7 11 - 0.77265 11 - 0.77265
8 13 - 0.58500 13 - 0.58500
9 11 - 0.56719 11 - 0.56719
10 11 - 0.85682 11 - 0.85682
11 11 - 0.99248 11 - 0.99248
12 8 - 0.99955 2 - 0.99955
13 13 - 0.98537 5-0.98537
14 11 - 0.86277 2 - 0.86276
15 8 - 0.99986 1-0.99985

that the measures are different. The repository with codes will be made available with the camera ready
version.

5.1 Results with 99% confidence hyperellipsoid

In Section [3:2.1] we described a method to decrease the runtime of the robustness computation while only
having negligible differences (at max 1 percentage point) in the results. We trained a Decision Tree with a
maximum depth of 4 on the Iris flower dataset with a train/test split of 90/10, yielding 15 test samples. To
compute the robustness of the prediction of the test samples, the uncertainty distribution of the test samples
is given as a multivariate normal distribution with 0.1 on the main diagonal and Zeros on the off-diagonals of
the covariance matrix for illustration purposes. In real applications, the uncertainty needs to be prescribed
based on the exact application setting, requiring domain-knowledge. In the experiments, we determine the
robustness of the prediction of the test samples computed with all boxes and the robustness, where we only
look at the boxes that are inside of or intersect with the bounding box of the 99% confidence hyperellipsoid
around the test samples. Table [1] lists the robustness of the 15 test samples computed with all boxes and
the boxes that are inside of or intersect with the bounding box of the 99% confidence hyperellipsoid. Even
though the number of boxes diverges heavily for some test samples we see that the robustness results are
very smnlar and only start to dlffer in the fifth decimal place : 3 -+ : 5 ‘obustness

-

-We ¢ achleved R2-scores

exceedlng 0.9999 in each test run (equlvalent to the 1nterpretat10n of the Rz—score in a linear regression
model), showing the similarity between the results and that it suffices to only consider the boxes that are
inside of or intersect with the bounding box of the 99% confidence hyperellipsoid to compute the robustness
of the prediction of the test samples.

5.2 Runtime Analysis

Considering only the boxes that are inside of or intersect with the bounding box of the 99% confidence
hyperellipsoid around a test sample not only returns accurate results for the probabilistic robustness of the

10
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Table 2: Comparison of runtimes for 10 test samples of the MNIST dataset using all boxes and only the
boxes that are inside of or intersect with the bounding box of the 99% confidence hyperellipsoid around a
test sample for robustness computation

All boxes 99% boxes
Test sample Boxes - Runtime Boxes - Runtime
1 19,118 - 488s 296 - 8s
2 24,616 - 589s 3,848 - 99s
3 32,564 - 502s 1,824 - 46s
4 39,636 - 697s 52 - 1s
5 13,356 - 274s 1,512 - 39s
6 32,564 - 518s 1,824 - 45s
7 13,356 - 241s 48 - 2s
8 48,128 - 927s 380 - 10s
9 32,564 - 468s 120 - 3s
10 5,736 - 153s 24 - 1s

Table 3: Comparison of results for 9 trained Decision Trees on the MNIST dataset using the boxes that are
inside of or intersect with the bounding box of the 99% confidence hyperellipsoid around a test sample and
using the method in Scher & Triigler| (2022) for probabilistic robustness computation

Resized Image Size DT depth RZ-score
3x3 4 0.99990

3x3 5 0.99999

3x3 6 0.99999

5%x5 5 0.99999

5%x5 6 0.99998

8 x 8 4 0.99999

8 x 8 5 0.99999

10 x 10 4 0.99999

10 x 10 5 0.99998

prediction of a test sample, but is also much faster. With the Iris flower dataset, the runtime difference for the
test samples was negligible since it only contains 4 input features. We therefore conducted experiments with
the MNIST dataset. We resized the images from 28 x 28 to 5 x 5 pixels, normalised them, flattened them into
a vector and used the 25-dimensional vector as input to train a Random Forest with 5 trees and a maximum
depth of 3 per tree on the training set (60,000 training samples). To evaluate the runtime of the robustness
computation, we determined the probabilistic robustness of the first 10 images of the test set (10,000 test
samples). The uncertainty distribution of the test samples is given as a multivariate normal distribution
with 0.001 on the main diagonal elements and Zeros on the off-diagonal elements of the covariance matrix
for illustration purposes. The resulting runtimes and number of boxes for the robustness computation of
the 10 test samples are listed in Table 2] We see that the number of boxes that are inside of or intersect
with the bounding box of the 99% confidence hyperellipsoid is much smaller and that the runtimes are much
shorter, compared to using all boxes. The difference in the results is negligible as we again achieved R2-
scores exceeding 0.9999, further indicating that it suffices to only use the boxes that are inside of or intersect
with the bounding box of the 99% confidence hyperellipsoid to compute the probabilistic robustness of the

prediction of test samples. We additionally computed results with the approximate method introduced in
Scher & Triigler| (2022) to compare the runtimes. Randomly sampling 1 million points and computing the

robustness results takes approximately 3 seconds per test point. Increasing the number of randomly sampled
data points by a factor of 10 also increases the runtime by a factor of 10.

5.3 Comparison to approximate probabilistic robustness computation

Scher & Trugler| (2022)) introduced the term real-world-robustness, but their method is based on random
sampling and therefore only returns approximate results. Wi is—e : e i 3

11
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Figure 4: Hlustratien-Distribution of probabilistic robustness resutts—for H?S test samples of @nXGWVVVnggg
classifier trained on the Iris_Pima-Indians-Diabetes datasetfor /

uncertainty of datapoints estimated via an assumed signal-to-noise ratio of 10/1.

when-the-feature-dimensionality-isnot-toe-high—We compare the two methods (Random Sampling (sampling
1,000,000 times) against 99% confidence hyperellipsoid around a test sample) by computing the probabilistic

robustness of the prediction of data samples on trained Decision Trees. The DTs have a depth between 4 and
6 and were trained on the MNIST dataset. We perform the same data preprocessing steps as for the runtime
analysis, but resize the images to various sizes, ranging from 3 x 3 to 10 x 10 such that the DTs have input
feature dimensions ranging from 9 to 100, and train them on the training set. The uncertainty is given as
a multivariate normal distribution with 0.0001 on the main diagonal elements and Zeros on the off-diagonal
elements of the covariance matrix for illustration purposes. We compare the results of each setting for the
first 10 test samples and observe that both methods return similar results for the robustness of the prediction
of data samples, with negligible differences starting in the third decimal place and R?-score exceeding 0.9999
for all settings, see Table [3] for a summary of the results. This indicates that the method of
to compute the robustness still works well with an input feature dimension of 100, and more input
features would be necessary to see a difference in the results. We also computed the robustness of data
samples with higher values in the main diagonal of the multivariate uncertainty distribution (0.001, 0.01, 0.1
and 0.5) to cover more parts of the input feature space and compared the results, but again only observed
minor differences.

5.4 Robustness computation for correlated features and mixed distortions

In case the features are correlated and the uncertainty distribution of data samples is best modelled by
different probability distributions in different dimensions, we can compute the robustness of the prediction
of a data sample p by utilising the reversed NORTA principle presented in Section To illustrate the
approach, we trained an XGBoosted Decision Tree model with 4 trees and a maximum depth of 4-and-6

Hee%efr%he—}ﬂs—ﬂewer—d&&be%?) on the Pima- Indlans Dlabetes dataset Smlth et al. LL1988Q Wlth a tram / test

5 0 and computed the robustness of

o X
the test samples. At first we removed subj ects that had a value of 0 for one of the varlables “Glucose”,
M nd ¢ BS ater orrelat atrixis ‘
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“SkinThickness” since it only had a minor influence on the performance of the resulting classifier, leading to 7
input features and 724 subjects. To estimate the uncertainty of the data points, domain knowledge about the
measuring instruments (e.g., for Glucose) is necessary. Since we do not have access to the specific measurin
devices and their uncertainty, we estimate the uncertainty of the data points based on the distributions
of the input features, We therefore estimated the underlying distributions of the 7 input features based
on histograms which suggest that the variables Glucose, BloodPressure, BMI and DiabetesPedigrecFunction
seem to follow a normal distribution whereas the variables Pregnancies, Insulin and Age seem to rather follow
an exponential distribution. We use these distributions to describe the uncertainty of the input features of
a data point by prescribing a signal-noise ratio factor of lsince-no-smatlervaties-coutdbe-sampled/10_to
downscale the variance of the variables. Next we computed the rank correlations between the variables and
trained an XGBoosted Decision Tree which returned an accuracy of 75% on the test samples. The robustness
of the 73 test samples ranges from 0.34 to 1.00 and results are plotted in Figure @l 55 test samples have a
probabilistic robustness above 0.99. which gives an indication of the certainty of the results for these samples.
The rather small probabilistic robustness of 0.34 for one test sample suggests that this result is uncertain
and a small change in one input feature would lead to a different result.

6 Conclusion

In this paper, we presented a method for quantifying the probabilistic robustness against natural distortions
in the input for tree-based classifiers. We extract the decision rules from a trained classifier to separate
the input feature space into non-overlapping regions, called boxes, and integrate the underlying probability
distribution that models the uncertainty of a test sample between the lower and upper boundaries of each
box to determine their covered probability mass. Taking the probability sum over the boxes that have the
same label as the test sample returns the robustness of the prediction of the test sample. We presented
this approach for Decision Trees in detail and discussed the extension to Random Forests and XGBoosted
trees. The method quantifies the probabilistic robustness of the prediction of individual data samples for
tree-based classifiers. This differs from other robustness measures which use various techniques to look for
adversarial examples and use the distance between the test sample and the closest counterfactual as the
measure for robustness. It also differs from robustness to common corruptions, which measures the average

rate of misclassification of a test set with perturbed samples, compared to our approach, which measures
the uncertainty of individual test samples.

One limitation of our approach is that the uncertainty distribution needs to be modelled as a continuous
probability distribution and that the PDF of the distribution must be analytically tractable to compute
the probabilistic robustness. This is not always possible, especially when features are correlated and the
uncertainty in different dimensions is best modelled by different distributions. Our method works for all
N-dimensional continuous multivariate distributions that follow the NORTA principle, thus be described
by a N x N covariance matrix and a set of associated N transformations. While there are specific types
of uncertainty where this is not er noise in computer vision), in many tasks

especially those that use tabular data measured by physical devices, the uncertainty will - at least in most
cases - follow an uncertainty that can be transformed into a multivariate Gaussian with the NORTA principle

In case the uncertainty distribution is more complex (e.g., because it is not given as a probability distribution,
but by a stochastic function that models some process), we can in principle use numerical integration
techniques to integrate the probability mass over the boxes for classifiers with explicit decision boundaries
(such as tree-based models) and find approximate solutions. We carried out some initial experiments in that
direction, solving Equation [f] with the |qguadpy| package (Schlémer et al.l [2021)) for numerical integration. We
observed however that the results with numerical integration techniques are often unstable and unreliable,
especially when a data sample p is in a large box, i.e., there is a big gap between the lower and upper
boundaries in at least one dimension of the box, compared to cases that are actually analytically solvable.
While it could be possible that with more carefully choosing types and parameters of the numerical routines
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the results could be better, this shows that simply using off-the-shelf integration routines is not a feasible
option.

A second limitation of our approach is the high amount of data storage space needed. Equation [3shows the
number of boxes that are being created for a trained classifier. Classifiers with high input feature dimension
and especially Random Forests quickly exceed the available storage space, such that the robustness cannot
be computed anymore. With a more powerful machine, experiments on tree-based classifiers with high input
feature dimension could be carried.

The method presented in this paper is applicable because tree-based classifiers have the convenient prop-
erty of having explicitly described decision boundaries that form hyperrectangles. Future research should
be dedicated to extending the presented approach to more advanced classifiers with complicated decision
boundaries, such as (nonlinear) Support Vector Machines and Neural Networks.
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